Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 352: 141276, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280652

RESUMO

Microbes may induce endogenous phosphorus (P) migration from lacustrine sediment. This study focused on the role of phosphate-solubilizing bacteria (PSB) disturbance in affecting the sediment P release and further contributing to cyanobacterial recruitment in Meiliang Bay, Lake Taihu. Gluconic acid was the main mechanism of phosphate solubilizing by PSB. The dominant PSB (Burkholderia) isolated from eutrophic lake sediments was used as a representative to investigate the effects of disturbance on endogenous P release using diffusive gradients in thin films (DGT) and high-resolution dialysis (HR-Peeper). The results show that soluble reactive phosphorus (SRP) and iron (Fe (II)) concentrations could reach 0.51 mg L-1 and 33.56 mg L-1 in pore water, respectively. And the sediment DGT-P and DGT-Fe were relatively reduced by PSB. Subsequent the chlorophyll a (Chl a) concentrations reached peaks of 344.8 µg L-1 in overlying water. The abundance of the dominant PSB (Burkholderia-Caballeronia-Paraburkholderia) were significantly associated with Chl a (P < 0.05) and algal effective state phosphorus (AAP) (P < 0.05), respectively. PSB mainly regulates AAP leaching to pore water and then diffusing across the sediment-water interface to the overlying water, producing the effect of cyanobacteria recruitment. The results provide new insights into early management of cyanobacterial resuscitation in a large eutrophic lake.


Assuntos
Cianobactérias , Poluentes Químicos da Água , Fosfatos , Lagos , Clorofila A , Sedimentos Geológicos , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Diálise Renal , Fósforo/análise , Água , China
2.
Chemosphere ; 313: 137315, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36410519

RESUMO

Attapulgite co-modified by lanthanum-iron (MT-LHMT) was used to study its effectiveness and mechanism in controlling phosphorus release from sediments. MT-LHMT has high adsorption capacity for phosphate and the maximum adsorption capacity of MT-LHMT to phosphate can reach 75.79 mg/g. The mechanism mainly involved electrostatic action, surface precipitation and ligand exchange between MT-LHMT bonded hydroxyl and phosphate to form La-O-P and Fe-O-P inner-sphere complexes. MT-LHMT has excellent adsorption performance in the pH range of 3-8. In addition to HCO3-, CO32- and HA- had a negative effect on the phosphorus removal of MT-LHMT, while NO3-, Cl-, SO42-, K+, Ca2+ and Mg2+ had a positive or no effect on phosphorus removal. MT-LHMT significantly reduced the risk of phosphorus release from overlying water in different dose effects and covering methods, as well as the unstable inactivation of flowing phosphorus, sediment dissolved reactive phosphorus (DRP) and available phosphorus with medium diffusion gradient in thin film in the sediment-water interface (Labile-PDGT). The MT-LHMT capping wrapped with fabric can reduce the risk of nitrogen release from sediment to overlying water more than only MT-LHMT capping. The results of this study showed that the MT-LHMT capping wrapped with fabric has high potential and can be used as an active capping material to manage the nitrogen and phosphorus load in surface water.


Assuntos
Fósforo , Poluentes Químicos da Água , Fósforo/química , Ferro/química , Lantânio/química , Poluentes Químicos da Água/análise , Sedimentos Geológicos/química , Fosfatos , Nitrogênio , Lagos
3.
Chemosphere ; 307(Pt 1): 135777, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35870615

RESUMO

The release of endogenous phosphorus from lacustrine sediment is a key element of freshwater eutrophication. The microbes in sediments may affect phosphorus migration and transformation during the growth of cyanobacteria, which may lead to the release of phosphorus from sediments and contribute to water eutrophication. To study phosphorus sorption and the microbial community structure in the overlying water and the vertical depth of sediments, samples in Meiliang Bay were collected during the dormancy and resuscitation phases of cyanobacteria. The results showed that there were high total phosphorus (TP) concentrations in the overlying water and sediment, with maximum values reached 0.24 mg L-1 and 1059 mg kg-1, respectively. Fitting by modified Langmuir model indicated that the partitioning coefficients (KP) was, from greatest to least: bottom sediment (maximum of 0.923 L g-1) > middle sediment (0.571 L g-1) > surface sediment (0.262 L g-1). During the cyanobacteria resuscitation stage, the relative abundance of Proteobacteria (18.37%-33.56%), Chloroflexi (9.57%-17.76%), Cyanobacteria (0.38%-2.62%), and the Nitrospirota phylum Thermodesulfovibrionia (4.61%-10.14%) were higher than the dormant period of cyanobacteria, and bacteria with phosphorus-solubilizing (27.27%-52.01%) accounted for the majority. The redundancy analysis (RDA) found that the structure of the microbial communities in sediments was significant correlation with organic phosphorus (OP) (P = 0.002) during recruitment period of cyanobacteria, which would accelerate the conversion of OP into soluble inorganic phosphorus and then gets released from sediment to water. The most predominant phylum among phosphorus-solubilizing bacteria (PSB) is Proteobacteria, followed by Actinobacteriota, which were positively correlated with equilibrium phosphorus concentration (EPC0) (P < 0.05) during the cyanobacterial resuscitation phase. The sediments from the cyanobacteria resuscitation phase had phosphorus release risk and highlighted the significant role of the bacterial community.


Assuntos
Cianobactérias , Microbiota , Poluentes Químicos da Água , China , Eutrofização , Sedimentos Geológicos/química , Lagos/química , Fósforo/análise , Água/análise , Poluentes Químicos da Água/análise
4.
Huan Jing Ke Xue ; 43(4): 1976-1987, 2022 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-35393821

RESUMO

The overwinter period is the pre-stage of the algal bloom, and the endogenous phosphorus (P) in sediments is one of the main P sources of algal blooms during this period. Based on the investigation of the water quality and sediment pollutants during the overwinter period of cyanobacteria (recruitment period and dormancy period), this study analyzed the P release characteristics of sediments in the horizontal and vertical directions and clarified the P release risk of sediments and the change in microbial community structures. The results showed that the lake bay was moderately eutrophic in the two periods of the study area, and the water quality and sediment nitrogen and P pollution were more serious, and the chlorophyll a content (Chl-a) was still at a high level in the overwinter period. The pseudo-second order model and the modified Langmuir model could respectively describe the P kinetics and sorption isotherm behavior in the sediment. The theoretical maximum P sorption capacities (Qmax) of sediments were bottom layer>middle layer>surface layer, and the highest value was 1.648 mg·g-1 with the highest P sorption rate constant of the pseudo second-order kinetic model of 6.292 g·(mg·min)-1. Additionally, the P adsorption parameters (Qmax, NAP, and EPC0) were mainly affected by the physical and chemical properties of the sediment itself and the nutritional level of the lake bay. The surface sediments from the dormancy period mainly played the role of P sinks, and the part of sediments from the recruitment period played the role of P sources, in which existed the risk of endogenous P release. The analysis of the microbial community structure in sediments indicated that the microbial diversity in the sediments during the dormancy period was higher than that during the recruitment period, and some microbial categories with phosphate-solubilizing function of relative abundance was high.


Assuntos
Cianobactérias , Poluentes Químicos da Água , Adsorção , Baías , China , Clorofila A/análise , Monitoramento Ambiental , Eutrofização , Sedimentos Geológicos/química , Lagos/química , Fósforo/análise , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...